
lab 22 Graphs via Adjacency Matrix

Instructions: In this lab implement a Graph with an adjacency matrix.
Implement the following class:

1 #ifndef GRAPHAM_H

2 #define GRAPHAM_H

3

4 /* This class represents a weighted directed graph via an adjacency matrix.

5 * Vertices are given an index, starting from 0 and ascending

6 * Class W : W represent the weight that can be associated with an edge.

7 * We will not weight the vertices.

8 * W is the data type for the weight. Normally an int.

9 */

10

11 template<class W>

12 class GraphAM {

13 private:

14 /* Recommended, but not necessary. */

15 void depthFirstTraversal(void (*visit)(const int node),

16 int *visited, const int cVertex);

17 /* You fill out private member variables. */

18 public:

19 /* Initialize an empty graph. */

20 GraphAM();

21

22 /* Initialize the Graph with a fixed number of vertices. */

23 GraphAM(const int vertices);

24

25 /* Deconstructor shall free up memory */

26 ~GraphAM();

27

28 /* Removes a vertex.

29 * return whether successful or not

30 */

31 bool removeVertex(int idx);

32

33 /* Adds amt vertices to the graph. Returns the starting point

34 * of the vertice count.

35 */

36 int addVertices(int amt);

37

38 /* Adds an edge with weight W to the graph. */

39 bool addEdge(const int start, const int end, const W &weight);

40

41 /*



42 * Remove edge from graph.

43 */

44 bool removeEdge(const int start, const int end);

45

46 void depthFirstTraversal(void (*visit)(const int node));

47 void breadthFirstTraversal(void (*visit)(const int node));

48

49 /*

50 * Return adjacent weight from start to end (or -1 if they are

51 * not adjacent.

52 */

53 W adjacent(const int start, const int end);

54

55 /* Run Dijkstra’s Shortest Path to find the shortest path from start

56 * to end and returning that smallest weight.

57 * return -1 if a path does not exist!

58 */

59 W dijkstraShortestPath(const int start, const int end);

60

61 /* Print out the Graph */

62 void print() const;

63

64 };

65

66 #include "grapham.cpp"

67

68 #endif

Write some test cases:
Create some test cases, using cxxtestgen, that you believe would cover all aspects of your code.

Memory Management:
Now that are using new, we must ensure that there is a corresponding delete to free the memory.
Ensure there are no memory leaks in your code! Please run Valgrind on your tests to ensure no
memory leaks!

How to turn in:
Turn in via GitHub. Ensure the file(s) are in your directory and then:

• $ git add <files>

• $ git commit

• $ git push

Due Date: November 27, 2017 2359

Teamwork: No teamwork, your work must be your own.


