
../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

CSCI 315: Data Structures
Shell Scripting

Dr. Paul E. West

Department of Computer Science
Charleston Southern University

April 12, 2017

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Shell script is just like batch file in MS-DOS
Useful to create our own commands
Can save our lots of time
Automate some of daily tasks

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Before Starting Linux Shell Script Programming you must
know:

Kernel
Shell
Process
Redirectors, Pipes, Filters etc

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Kernel

Kernel is the heart of Linux OS
It manages resource of Linux OS
print data on printer
memory, file management

Kernel decides who will use this resource, for how long and
when.

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Linux Shell

Computer understands the language of 0’s and 1’s called
binary language

Difficult for us to read and write

In the OS there is a special program called Shell
Shell accepts your instruction or commands in English and
translate it into computers native binary language

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Linux Shell

This is what the shell does for us

You type the command and shell converts it

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Shell is a command language interpreter
Popular shells

SH : Original shell
BSH : Bourne SHell
BASH : Bourne Again SHell (Ha!)
CSH : Similar to C programming language.
TCSH : Turbo C Shell
KSH : Korn SHell

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

To find your shell type following command
echo $SHELL

Known shells on your system
cat /etc/shells

Your default shell is defined in /etc/passwd
How do you display the content of passwd?

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Process

Process is any kind of program or task carried out by your
PC.
A process is a program to perform some job.
In Linux when you start process, it gets a number, called
PID or process-id
In Linux, the PID is in range 0 to 65535.

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Why Processes?

Linux is a multi-user, multitasking OS
You can run more than two processes simultaneously if
you wish.
An instance of running command is called a process
Each process has a process-id (PID)

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Login Procedure

The first process to run is
called init, PID #1
It spawns a getty process
The /bin/login program is
then executed
After user inputs
login/password, your shell
(bash) is loaded

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Login Procedure

The bash process looks for the system file, /etc/profile, and
executes its commands
It then looks in the user’s home directory for an
initialization file called .bash_profile
Then it will execute a command for the user’s ENV file,
usually called .bashrc
Finally the default prompt, dollar sign ($) (unless you have
changed the default), appears on your screen and the shell
waits for commands.

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

The Environment

The environment of a process consists of
variables
open files
working directory
functions
resource limits
...

The configuration for the user’s shell is defined in the shell
initialization files

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Initialization Files

The bash shell has a number of startup files that are
sourced
Sourcing a file causes all settings in the file to become part
of the current shell
The initialization files are sourced depending on whether
the shell is a login shell, an interactive shell, or a
non-interactive shell (a shell script)
Some files may be empty

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Initlization Files

When you log on, before the shell prompt appears,
/etc/profile is sourced
It is a system wide initialization file
Next, if it exists, the .bash_profile in the user’s home
directory is sourced

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Variables

In Linux, there are two types of variables
System variables

Created and controlled by system
Defined in CAPITAL LETTERS

User defined variables (UDV)
Created and maintained by user.
Defined in lower case letters

The capitalization isn’t really enforced, just good practice

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

System Variables

To see system variables, type
env
BASH - Shell name
BASH_VERSION - shell version name
COLUMNS - No. of columns for screen
HOME - home directory
LINES - No. of lines for screen
PS1 - Prompt setting 1
PWD - Current working directory

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

User Variables

To define UDV use following syntax
Syntax: variablename=value
no=10
10=no
To define variable called ’vech’ having value Bus

vech=Bus
To define variable called n having value 10

n=10

This is all very shell specific
sh,csh, etc. have their own syntax

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Variable Naming Rules

Variable name must begin with Alphanumeric character or
underscore character (_), followed by one or more
Alphanumeric character (same as C++ variable names)
Don’t put spaces on either side of the equal sign when
assigning value to variable.
no=10
no =10
no= 10

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Variable Naming Rules

Variables are case-sensitive, just like filename in Linux.
no=10
No=11
NO=20
nO=2
Type echo $variablename to see the differences

$ is used to get the value of a variable
No is just a word, $No is the value of the variable No

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Variable Naming Rules

You can define NULL variable as follows
vech=
vech=""
NULL is basically the empty string
vech with value NULL is different from not having variable
vech defined at all
Type echo $vech to print it’s value
Do not use ?,* etc, in your variable names.

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Arithmetic Operations

Syntax: expr op1 operator op2
op1 and op2 are any Integer Number
operator

+, -, /, %(modular), * Multiplication

expr 6 + 3 will work
expr 6+3 will not work!!

Space between number and OP is required!!

Why? Think about filenames

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Permissions

Files have permissions in Unix
First 10 chars in ls -l output

3 Types of perms: Read, Write, eXecute
3 types affected: User, Group, Other
chmod (change mode) used to change permissions
Two ways of using chmod: absolute and relative

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

chmod

Relative: chmod changes files
chmod u+r files add read perms for users
chmod go-wx files remove write and execute perms from
group and other (no error if group and other didn’t have w
and x before)

Absolute: chmod 3-digit-code files
Consider read, write, execute as bits in binary number. 3
digits total for user, group, and other.
chmod 751 files
7 = 4 + 2 + 1 r & w & x for user 5 = 4 + 1 which means r & x
for group,
1 = x for other
I prefer absolute, no question as to result
Either is acceptable for HW/exams

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

How To Write a Shell Script

The First Line
The first column of the first line of the script will indicate the
program that will be executing the code in the script.
#!/bin/bash
The #! is called a magic number and is used by the kernel
to identify the program that should be interpreting the code
in the script.
The #! is pronounced shebang.
Etymology:

! has always been shorten to bang.
Probably came from SHarp Bang, haSH Bang, or SHEll
Bang

This line must be line 1 of your script.
No spaces before #

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Write a Shell Script

$ cat > first
#!/bin/bash
My first shell script
#
clear
echo "Knowledge is Power"
Press Ctrl + D to finish typing and save.
indicates a comment, like // in C/C++

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Executing A Script

Try first
Didn’t work? Why? Path
OK, now try
./first
But that didn’t work, why? Permissions (90+% of problem
in Linux.)
Type
chmod +x first
./first

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Qoutes

Double Quotes " − Anything enclosed i n double quotes removed meaning of
those charac te rs (except \ and $) .

’ S ing le quotes ’ − Enclosed i n s i n g l e quotes remains unchanged .
‘ Back quote ‘ − To execute command .
‘ a l lows commands w i t h i n s t r i n g s
Remember : $ i s how you access the value o f a v a r i a b l e !

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Practice

date=" August 31 , 1976 "
echo " Today i s date "
echo " Today i s $date "
echo ‘ Today i s $date ’
echo " Today i s ‘ date ‘ ’
echo " expr 6 + 3 "
echo ’ expr 6 + 3 ’

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Command Line Arguments

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Command Line Arguments

In the shell, if we want to refer to the command line
arguments
myshell is $0
f00 is $1
bar is $2 (etc.)
Number of arguments in a command line
$# (useful for loops and error checks)
All of command line arguments
$* (useful for passing on to other commands)

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Practice

$ cat > demo
#!/bin/bash
#
Script that demos, command line args
#
echo "Total number of command line argument are $#"
echo "$0 is script name"
echo "$1 is first argument"
echo "$2 is second argument"
echo "All of them are :- $*"

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Now Run

./demo Hello World

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Exit Status

In Linux when a command is executed, it returns a value
called the exit status
return value is zero (0), command was successful,
return value is nonzero (>0), command was not successful
To determine this exit status we use the $? variable of shell
(? For what just happened).
(Windows has a similar concept called error levels)

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Exit Status Practice

expr 1 + 3
echo $?
echo Welcome
echo $?
wildwest canwork?
echo $?
date
echo $?
echon $?
echo $?

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

The read Statement

Use to get input from keyboard and store them to variable.
Syntax: read varible1 varible2 varibleN
Create the following script
cat > sayH
#!/bin/bash
#Script to read your name from key-board
#
echo "Your first name please:"
read fname
echo "Hello $fname, Lets be friend!"

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Parameters for read

read answer
Reads a line from standard input and assigns it to the
variable answer.

read first last
Reads a line from standard input to the first whitespace or
newline, putting the first word typed into the variable first
and the rest of the line into the variable last.

read
Reads a line from standard input and assigns it to the
built-in variable, REPLY.

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Parameters for read

read -a arrayname
Reads a list of words into an array called arrayname (just
FYI).

read -e
Used in interactive shells with command line editing in
effect; e.g., if editor is vi, vi commands can be used on the
input line.

read -p prompt
Prints a prompt, waits for input, and stores input in REPLY
variable.

read -r line
Allows the input to contain a backslash.

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

read Example

#!/bin/bash
Scriptname: nosy
echo -e "Are you happy?"
read answer
echo "$answer is the right response."
echo -e "What is your full name?"
read first middle last
echo "Hello $first"
echo -n "Where do you work?"
read
echo "I guess $REPLY keeps you busy!"
read -p "Enter your job title: "
echo "I thought you might be an $REPLY."
echo -n "Who are your best friends? "
read -a friends
echo "Say hi to ${friends[2]}."

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

If Then

Syntax:
if condition
then
command1 if condition is true or if exit status
of condition is 0 (zero)
...
...
fi

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Practice

cat > showfile #!/bin/bash
#
#Script to print file
#
if cat $1
then
echo -e "File $1, found and successfully echoed"
fi
./showfile foo

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

test Command

test command is used to see if an expression is true
if it is true it return zero(0)
returns nonzero(>0) for false.
Syntax: test expression [OR expression]

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Practice

#!/bin/bash
#
Script to see whether argument is positive
#
if test $1 -gt 0
then
echo "$1 is positive"
fi

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Practice

ispostive 5
ispostive -45
ispostive

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

test Command

For Mathematical comparisons use following operators in
Shell Scripts

-eq : is equal to
-ne : not equal to
-lt : less than
-le : less than or equal to
-gt : greater than
-ge : greater than or equal to

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

test Command

string1 = string2
string1 != string2
string1

string1 is NOT NULL or not defined
-n string1

string1 is NOT NULL and does exist
-z string1

string1 is NULL and does exist

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

test Command

-s file : Non empty file
-f file : Is File exist or normal file and not a directory
-d dir : Is Directory exist and not a file
-w file : Is writeable file
-r file : Is read-only file
-x file : Is file is executable

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Logical Operators

! expression
Logical NOT

expression1 -a expression2
Logical AND

expression1 -o expression2
Logical OR

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

if else fi

if condition
then
command1 if condition is true or if exit status
of condition is 0(zero)
...
...
else
command2 if condition is false or if exit status
of condition is >0 (nonzero)
...
...
fi

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Practice

cat > isnump_n
#!/bin/bash
#
Script to see whether argument is positive or negative
#
if test $# -ne 1
then
echo "$0 : You must supply one integer"
exit 1
fi
if test $1 -gt 0
then
echo "$1 is positive"
else
echo "$1 is negative"
fi

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Practice

isnump_n 5
isnump_n -45
isnump_n
isnump_n 0

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Multilevel if else fi

if condition
then
condition is zero (true - 0)
execute all commands up to elif statement
elif condition1
condition1 is zero (true - 0)
execute all commands up to elif statement
elif condition2
condition2 is zero (true - 0)
execute all commands up to elif statement
else
None of the above condtion,condtion1,condtion2 are true (i.e.
all of the above nonzero or false)
execute all commands up to fi
fi

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Multilevel if else fi

$ cat > elf
#!/bin/bash
#
Script to test if..elif...else
#
if [$1 -gt 0] # note space around [and]
then
echo "$1 is positive"
elif [$1 -lt 0]
then
echo "$1 is negative"
elif [$1 -eq 0]
then
echo "$1 is zero"
else
echo "Oops! $1 is not number, give number"
fi

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Practice

./elf 1

./elf -2

./elf 0

./elf a

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

For loop

More like a for-each loop
Syntax:
for { variable name } in { list }
do
execute one for each item in the list until the list is
not finished (And repeat all statement between do and
done)
done

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Practice

cat > testfor
for i in 1 2 3 4 5
do
echo "Welcome $i times"
done

More useful then you think for file management
Variable could be part of a filename or a command (e.g.
hw$i.ys)

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

cat > mtable
! / b in / bash
#
S c r i p t to t e s t for loop
##
i f [$# −eq 0]
then
echo " Er ro r − Number missing form command l i n e argument "
echo " Syntax : $0 number "
echo "Use to p r i n t m u l t i p l i c a t i o n tab l e f o r given number "
e x i t 1
f i
n=$1
for i i n 1 2 3 4 5 6 7 8 9 10
do
echo " $n ∗ $ i = ‘ expr $ i \∗ $n ‘ "
done

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Practice

./mtable 7

./mtable

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

C-style Loop

for ((c =1; c <=5; c++)) ; do
loop body

done
can use { } ins tead of do done on modern Bash , but undocumented
More on (()) i n a few s l i d e s
FYI : break and continue are supported by a l l Bash loops

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

While Loop

Syntax:
while [condition]
do
command1
command2
command3
..
....
done
There is also an until loop that is the same as while not.

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

cat > nt1
! / b in / bash
#
S c r i p t to t e s t while statement
##
i f [$# −eq 0]
then
echo " Er ro r − Number missing form command l i n e argument "
echo " Syntax : $0 number "
echo " Use to p r i n t m u l t i p l i c a t i o n tab l e f o r given number "
e x i t 1
f i
n=$1
i =1
while [$ i −l e 10]
do
echo " $n ∗ $ i = ‘ expr $ i \∗ $n ‘ "
i = ‘ expr $ i + 1 ‘
done

Execute the following ./nt1 7

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

case statement

Syntax:
case $var iab le−name i n
pa t te rn1) command
. . .
. .
command ; ;
pa t te rn2) command
. . .
. .
command ; ;
pat ternN) command
. . .
. .
command ; ;
∗) command
. . .
. . .
command ; ;
esac

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Practice

cat > car
! / b in / bash
i f no veh i c l e name i s given
i . e . −z $1 i s def ined and i t i s NULL
#
i f no command l i ne arg
i f [−z $1]
then
r e n t a l = "∗∗∗ Unknown veh i c l e ∗∗∗"
e l i f [−n $1]
then
otherwise make f i r s t arg as r e n t a l
r e n t a l =$1
f i
case $ r e n t a l i n
" car ") echo " For $ r e n t a l Rs.20 per k /m" ; ;
" van ") echo " For $ r e n t a l Rs.10 per k /m" ; ;
" jeep ") echo " For $ r e n t a l Rs.5 per k /m" ; ;
" b i c y c l e ") echo " For $ r e n t a l 20 paisa per k /m" ; ;
∗) echo " Sorry , I can not get a $ r e n t a l f o r you " ; ;
esac

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

Practice

car van
car car
car Maruti-800

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

let using (())

Though the command is let, the usual use is with (()). The
goal is to simplify some basic math and variable usage.
while [$a -lt $LIMIT] #spacing is required
becomes
while ((a <= LIMIT)) #spacing is optional
-o becomes || and aa becomes &&
a=
‘ expr \ $a + 1 ‘

becomes ((a += 1))
z = $((a + b)) is the more general form

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

declare

With declare variables can be given a type:
declare -i n
n=6/3 # n will now be 2, no expr or let

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

seq

seq is an older command, but useful:
seq [OPTION]... LAST
seq [OPTION]... FIRST LAST
seq [OPTION]... FIRST INCREMENT LAST
FIRST and INCREMENT default to 1, options for
formatting and padding
for i i n ‘ seq 1 10 ‘ ; do

loop body
done

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

{} expansion

or i in {1..10..2} # 1 to 10 increment by 2
No spaces, no variables allowed
Unless you use eval, but that is weird
{f..k} becomes f g h i j k
1.{0..9} becomes 1.0 1.1 1.2 ... 1.9
{A..Z}{0..9} generates: A0 A1 ... A9 B0 B1 .. Z9
{{A..Z},{a..z}} generates: A B .. Z a b .. Z
Can have something before or after { }

../imgs/csu-logo

Overview Architecture Basics Scripting Boolean Loops Case Conclusion

There is a lot.
I do not expect you to know everything on a test.
It is best to understand how much power shell scripting is
giving you:

program chaining/redirection
program argument manipulation
can interact with anything

When you don’t know something, Google!

	Overview
	Architecture
	Basics
	Scripting
	Boolean
	Loops
	Case
	Conclusion

