
lab 14 Binary Trees part 1

Instructions: This lab begins our construction of Binary Trees. It is very important to get these
basics down before proceeding to further functionality of Trees. Please implement empty construc-
tor, copy constructor, put, inorderString, lowest common ancestor (LCA), and a deconstructor.

1

2 #ifndef BINARY_TREE_H

3 #define BINARY_TREE_H

4

5 #include <string>

6

7 template<class T>

8 class BinaryTreeNode {

9 public:

10 BinaryTreeNode<T> () {

11 }

12 };

13

14 template<class T>

15 class BinaryTree {

16 private:

17 /* You fill in private member data. */

18

19 /* Recommended, but not necessary helper function. */

20 void put(BinaryTreeNode<T> *rover, BinaryTreeNode<T> *newNode);

21 /* Recommended, but not necessary helper function. */

22 std::string inorderString(BinaryTreeNode<T> *node, std::string &ret);

23 public:

24

25 /* Creates an empty binary tree. */

26 BinaryTree();

27

28 /* Does a deep copy of the tree. */

29 BinaryTree(const BinaryTree<T> &tree);

30

31 /* Add a given value to the Binary Tree.

32 * Must maintain ordering!

33 * Do NOT do ANY balancing!

34 */

35 void put(const T &val);

36

37 /* Returns the height for the binary tree. */

38 int getHeight();

39

40 /* Returns a string representation of the binary Tree in order. */



41 std::string inorderString();

42

43 /* Return the lowest common ancestor (LCA) of two values.

44 * The LCA is the most immediate parent of both values. For example:

45 * 4

46 * / \

47 * 2 8

48 * / \ / \

49 * 1 3 6 10

50 * LCA(1, 3) = 2

51 * LCA(1, 2) = 2

52 * LCA(1, 6) = 4

53 */

54 T& lca(T& a, T& b);

55

56 /* Always free memory. */

57 ~BinaryTree();

58 };

59

60 /* Since BinaryTree is templated, we include the .cpp.

61 * Templated classes are not implemented until utilized (or explicitly

62 * declared.)

63 */

64 #include "binarytree.cpp"

65

66 #endif

Write some test cases:
Create some test cases, using cxxtestgen, that you believe would cover all aspects of your code.

Memory Management:
Now that are using new, we must ensure that there is a corresponding delete to free the memory.
Ensure there are no memory leaks in your code! Please run Valgrind on your tests to ensure no
memory leaks!

How to turn in:
Turn in via GitHub. Ensure the file(s) are in your directory and then:

• $ git add <files>

• $ git commit

• $ git push

Due Date: October 25, 2017 2359

Teamwork: No teamwork, your work must be your own.


