
../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

CSCI 315: Data Structures

Paul E. West, PhD

Department of Computer Science
Charleston Southern University

August 22, 2017

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Linux File Structure

In Linux, everything is a file. Well, almost!
Programs can use disk files, serial ports, printers, and
other devices in exactly the same way they would use a file.
A file has a name and some properties, or “administrative
information”
creation/modification date
its permissions
The properties are stored in the file’s inode
a special block of data in the file system
contains administrative information
contains the length of the file
where on the disk it’s stored

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Directories

Directories are files.
A directory is a file that holds the inode numbers and
names of other files.
Each directory entry is a link to a file’s inode; remove the
filename and you remove the link.
If the number of links to a file reaches zero, the inode and
the data it references are no longer in use and are marked
as free.
This allows deletion when there are multiple links to the
same file to be managed correctly.

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Directoreis continued

Files are arranged in directories, which may also contain
subdirectories
The / directory sits at the top of the hierarchy and contains
all of the system’s files in subdirectories
The /home directory is a subdirectory of the root directory
which is the home of all users
/bin for system programs (“binaries”)
/etc for system configuration files,
/lib for system libraries
/dev for physical devices and provide the interface to those
devices

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Files and Devices

Even hardware devices are very often represented
(mapped) by files.
You can mount a CD-ROM drive as a file:
mount -t iso9660 /dev/hdc /mnt/cdrom
cd /mnt/cdrom

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

/dev/console

This device represents the system console
Error messages and diagnostics are often sent to this
device.
On Linux, it’s usually the “active” virtual console

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

/dev/tty

The special file /dev/tty is an alias for the controlling
terminal of a process

keyboard
screen
window

/dev/tty allows a program to write directly to the user,
without regard to which pseudo-terminal or hardware
terminal the user is using

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

/dev/null

This is the null device.
All output written to this device is discarded.
Unwanted output (aka a student’s email complaint/rant) is
often redirected to /dev/null.
echo do not want to see this >/dev/null
cp /dev/null empty_file

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Introduction

As a programmer or system administrator, you should
know how to program under Linux
We are going to learn

how to compile a program under Linux (gcc)
how to debug (gdb & ddd)
how to automate compilation (make)
how to perform memory analysis (valgrind)
how to create performance graphs (gnuplot - next set of
slides.)

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Compiling under C/C++

We start with the simple
case of all your source
code in a single file.
Try to generate a .c (NOT a
.cpp) file as listed on the
left hand side.

#include < s t d i o . h>

i n t main (i n t argc , char∗ argv []) {

p r i n t f (" h e l l o wor ld \ n ") ;

return 0;
}

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Compile

gcc test.c
What file is generated?
Name your compiled file by using
gcc test.c -o test
Run the generated executable file

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Creating Debug Ready Code

cc -g test.c -o test
The ’-g’ flag tells the compiler to use debug info
The compile file size is much larger
We may still remove this debug information using the strip
command
strip test

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Adding Optimizations

The compiler can help improve the performance of your
code via optimizations
cc -O test.c -o test
The ’-O’ flag tells the compiler to optimize the code.
Usually can define an optimization level by adding a
number to the ’-O’ flag

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Getting Extra Compiler Warnings

Error messages
Erroneous code that does not comply with the C standard

Warnings
Codes that usually tend to cause errors during runtime

Extra compiler warnings
useful to improve the quality of our source code
expose bugs that will really bug us later

cc -Wall test.c -o test

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Compiling a C++ program

#include <iostream >

i n t main (i n t argc , char∗ argv []) {
s td : : cout << " h e l l o wor ld " << endl ;
return 0;

}

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Compiling Multi Source Programs

compile them
cc main.c a.c b.c -o hello_world

Comments
external symbols need “extern” keyword
source file order becomes important
as program size increases so does compilation time

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Limitation

Even if we only make a change in one of the source files,
all of them will be re-compiled when we run the compiler
again.
To overcome:

cc -c main.cc
cc -c a.c
cc -c b.c
cc main.o a.o b.o -o hello_world

“-c” tells compiler only to create an object file, and not to
generate a final executable file just yet
The fourth command links the 3 object files into an
executable file

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Automating Program Compilation

makefile is a collection of instructions that should be used
to compile your program.
Once you modify some source files, and type the
command “make” (or “gmake” if using GNU’s make), your
program will be recompiled using as few compilation
commands as possible.

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Makefile Structure

Variable Definitions
define values for variables for reuse
CFLAGS = −g −Wall
SRCS = main . c f i l e 1 . c f i l e 2 . c
CC = gcc

Dependency Rules
define under what conditions a given file needs to be
re-compiled, and how to compile it.
main . o : main . c
[tab] gcc −g −Wall −c main . c

if any of the files after : change,
then recompile
Note: You must use tabs in makefiles! (Spaces will NOT
work.)
is a comment

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Single Source Makefile Example

f i r s t you l i s t your v a r i a b l e (s)
CC = gcc
top−l e v e l r u l e to create the program .
t y p i c a l l y top r u l e i s a l l (by convent ion)
a l l : main
compi l ing the source f i l e , main . o depends on main . c
main . o : main . c

$ (CC) −g −Wall −c main . c
$ (CC) uses value o f CC var iab le , case s e n s i t i v e
l i n k i n g the program , program name i s main
main : main . o

($CC) −g main . o −o main
c lean ing every th ing t h a t can be a u t o m a t i c a l l y recreated wi th "make " .
b a s i c a l l y ob jec ts , the executable , and temp f i l e s
clean :

rm −f main main . o

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Multi Source file Example

top−l e v e l r u l e to compile the whole program .
a l l : prog
program i s made of severa l source f i l e s .
prog : main . o f i l e 1 . o f i l e 2 . o

gcc main . o f i l e 1 . o f i l e 2 . o −o prog
r u l e f o r f i l e " main . o " .
main . o : main . c f i l e 1 . h f i l e 2 . h

gcc −g −Wall −c main . c
r u l e f o r f i l e " f i l e 1 . o " .
f i l e 1 . o : f i l e 1 . c f i l e 1 . h

gcc −g −Wall −c f i l e 1 . c
r u l e f o r f i l e " f i l e 2 . o " .
f i l e 2 . o : f i l e 2 . c f i l e 2 . h

gcc −g −Wall −c f i l e 2 . c
r u l e f o r c lean ing f i l e s generated dur ing compi la t ions .
clean :

rm −f prog main . o f i l e 1 . o f i l e 2 . o

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Multi Source Make

Commands can be anything, though usually they are
gcc/g++ to compile or link
Commands can be multiline, use tabs
make param:

Runs the dependency for param
No param runs first label found (usually all)
make clean deletes files created by make

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

makedepend

Program to generate dependencies
Parameters are C/C++ files to scan
It processes # directives to check includes
Dependencies are critical, can do dependency graphs
Can be added to Makefile:
depend : Makef i le $ (SRC)

makedepend $ (INCLUDES) $ (SRC)
end of Makef i le
DO NOT DELETE THIS LINE −− make depend depends on i t .

Now make depend will run makedepend and add its results
directly to Makefile. It doesn’t generate the commands, but
it does take care of finding dependencies for you.
Many compilers automatically run dependency checks
every time-never misses a dependency, but wasted work

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

configure

Configure is part of the autoconf GNU system
It makes Makefiles (ha!)
Finds things (like say tcl) and updates Makefile variables
with their locations
Good for multi-platform Makefiles
Not needed for this class

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Debugging C/C++ Prrograms

Before invoking the debugger, make sure you compiled
your program with the "-g" flag (for gcc or g++)
gcc -g debug_me.c -o debug_me
gdb debug_me

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Quitting

q quits the debugger
Only do this when you are done, not when you want to
reload a program

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Running the Program Inside a Debugger

Once we invoked the debugger, we can run the program
using the command "run".
Can also just use the single letter r
If the program requires command line parameters, we can
supply them to the "run" command of gdb
run "hello, world" "goodbye, world"

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Setting Breakpoints

A break point is a command for the debugger to stop the
execution of the program before executing a specific
source line.
Specifying a specific line of code to stop in:
break 9 (assumes only 1 source file)
break debug_me.c:9
debug_me.c is the file name, 9 is the line number
Specifying a function name, to break every time it is being
called:
break main OR
b main
Can also give a Boolean expression for conditional
breakpoints

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

list

list #
Shows that line number and next few lines
Hit return to show more lines
Can also just use letter l
l debug_me:#

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Stepping A Command At A Time

Type command
break main
run "hello, world" "goodbye, world"

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Stepping A Command At A Time (continued...)

Now we want to start running the program slowly, step by
step.
"next" (or n) - (step over) execute the current command,
and stop again, showing the next command in the code to
be executed.

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Stepping A Command At A Time (continued...)

step (or s) - (step into functions) execute the current
command, and if it is a function call - break at the
beginning of that function
step # - step # number of steps

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Printing Variables And Expressions

print (or p) the contents of a variable with a command like
this:

print i

You may also try to print more complex expressions, like
"i*2", or "argv[3]", or "argv[argc]"

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Examining The Function Call Stack

Once we got into a break-point and examined some
variables, we might also wish to see "where we are".
This can be done using the "where" command

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Examining The Function Call Stack

we can see contents of variables local to the calling
function, or to any other function on the stack
frame 1
print i
The "frame" command tells the debugger to switch to the
given stack frame
"0" is the frame of the currently executing function.

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Debugging A Crashed Program

Sometimes a program is will generate a core file containing
its memory image when it crashes
May also use backtrace (bt) shows series of functions calls
to where we are
Once we get such a core file, we can look at it by issuing
the following command
gdb /path/to/program/debug_me core

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Miscellaneous

When you type run, it checks if executable has changed,
but doesn’t do recompilation
kill terminates currently running code, but doesn’t exit gdb
help (or h) gives general help
Help command gives help on some command

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

ddd

GUI wrapper for gdb
Also a wrapper for Java’s jdb, Perl’s and Python’s pdb,
among others
apt-get install ddd

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

System Calls And Device Drivers

We can access and control files and devices using system
calls
At the heart of the operating system, the kernel, are a
number of device drivers.
The low-level functions used to access the device drivers,
the system calls, include:

open: Open a file or device
read: Read from an open file or device
write: Write to a file or device
close: Close the file or device
ioctl: Pass control information to a device driver

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

System Calls And Device Drivers

The problem with using low-level system calls directly for
input and output is that they can be very inefficient.
Why?

Performance penalty in making a system call.
The hardware has limitations

To provide a higher-level interface to devices and disk files,
provides a number of standard libraries

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

What Even Is?

A tool to perform
memory debugging
memory leak detection
memory profiling

Valgrind accomplishes this by running your program inside
of its virtual machine and capturing all your memory
accesses/requests.

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Memory debugging

A successful run:
==2231== Memcheck , a memory e r r o r de tec to r
==2231== Copyr ight (C) 2002−2013, and GNU GPL’ d , by J u l i a n Seward e t a l .
==2231== Using Valgr ind −3.10.0 and LibVEX ; rerun wi th −h f o r copy r i gh t i n f o
==2231== Command: . / a . out
==2231==
==2231==
==2231== HEAP SUMMARY:
==2231== i n use at e x i t : 0 bytes i n 0 blocks
==2231== t o t a l heap usage : 0 a l l ocs , 0 f rees , 0 bytes a l l o ca t e d
==2231==
==2231== A l l heap blocks were f reed −− no leaks are poss ib le
==2231==
==2231== For counts o f detected and suppressed er ro rs , rerun wi th : −v
==2231== ERROR SUMMARY: 0 e r r o r s from 0 contex ts (suppressed : 0 from 0)

Notice Valgrind keeps track of:
(heap) memory used on exit
How much heap memory was allocated & freed
How many memory errors (out of bounds memory access)
were detected.

The “2231” is the process id, which for this class is
unimportant

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Memory Leak Detection

Let’s examine an obvious memory leak:
i n t main (i n t argc , char ∗argv []) {

i n t ∗ i n t s = new i n t [1 0 2 4] ;

r e t u r n 0 ;
}

g++ test.c && valgrind ./a.out
==2476== HEAP SUMMARY:
==2476== i n use at e x i t : 4 ,096 bytes i n 1 blocks
==2476== t o t a l heap usage : 1 a l l ocs , 0 f rees , 4 ,096 bytes a l l o ca t e d
==2476==
==2476== LEAK SUMMARY:
==2476== d e f i n i t e l y l o s t : 4 ,096 bytes i n 1 blocks
==2476== i n d i r e c t l y l o s t : 0 bytes i n 0 blocks
==2476== poss ib l y l o s t : 0 bytes i n 0 blocks
==2476== s t i l l reachable : 0 bytes i n 0 blocks
==2476== suppressed : 0 bytes i n 0 blocks

Definitly lost means ... we lost ...
Inderectly lost means, we lost and it could be hard to find.
Possibly lost means Valgrind was not able to determine if
the memory was deallocated or not.
Still reachable means you have a dangling pointer(more
later).

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Memory Usage detection

A better version:

i n t main (i n t argc , char ∗argv []) {
i n t ∗ i n t s = new i n t [1 0 2 4] ;

de le te [] i n t s ;
r e t u r n 0 ;

}

g++ test.c && valgrind ./a.out
==2591== HEAP SUMMARY:
==2591== i n use at e x i t : 0 bytes i n 0 blocks
==2591== t o t a l heap usage : 1 a l l ocs , 1 f rees , 4 ,096 bytes a l l o ca t e d
==2591==
==2591== A l l heap blocks were f reed −− no leaks are poss ib le

Notice Valgrind can tell us how much heap memory we are
using even though we freed (deallocated) it.

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Memory Access Error Detection

Now lets use Valgrind to detect a off by one memory error.
i n t main (i n t argc , char ∗argv []) {

i n t ∗ i n t s = new i n t [1 0 2 4] ;

f o r (i n t i = 0 ; i <= 1024; i ++) {
i n t s [i] = i ;

}

de le te [] i n t s ;
r e t u r n 0 ;

}

Do you see the error?
==2615== I n v a l i d w r i t e o f s i ze 4
==2615== at 0x400673 : main (i n / home / pwest / t / a . out)
==2615== Address 0x5a03040 i s 0 bytes a f t e r a b lock o f s ize 4 ,096 a l l oc ’ d
==2615== at 0x4C298A0 : opera tor new [] (unsigned long) (vg_replace_mal loc . c :389)
==2615== by 0x40064E : main (i n / home / pwest / t / a . out)
==2615==
==2615==
==2615== HEAP SUMMARY:
==2615== i n use at e x i t : 0 bytes i n 0 blocks
==2615== t o t a l heap usage : 1 a l l ocs , 1 f rees , 4 ,096 bytes a l l o c a t e

Well that tells us the error, but where is it?

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Getting A Little More Help

Compile with debug flags! (g++ -g test.c && valgrind
./a.out)

==2634== I n v a l i d w r i t e o f s i ze 4
==2634== at 0x400673 : main (t e s t . c : 7)
==2634== Address 0x5a03040 i s 0 bytes a f t e r a b lock o f s ize 4 ,096 a l l oc ’ d
==2634== at 0x4C298A0 : opera tor new [] (unsigned long) (vg_replace_mal loc . c :389)
==2634== by 0x40064E : main (t e s t . c : 4)
==2634==
==2634==
==2634== HEAP SUMMARY:
==2634== i n use at e x i t : 0 bytes i n 0 blocks
==2634== t o t a l heap usage : 1 a l l ocs , 1 f rees , 4 ,096 bytes a l l o ca t e d
==2634==
==2634== A l l heap blocks were f reed −− no leaks are poss ib le

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Conclusion

Valgrind can be used to detect memory leaks and memory
access errors.
Valgrind provides other tools to profile memory usage and
cache usage, but those are beyond the scope of this class.
Notice that Java has memory debugging built it, but C++
doesn’t. Why?

../imgs/csu-logo

Linux Philosophy Compilation Makefile Debugging Sys Arch Valgrind Future

Other Tools

gprof: Used to profile
Profiling tells you where you program is spending the most
time.
With that knowledge you can focus you energy on certain
parts to speed up performance. (Why?)

gnuplot: Generates simple graphs
gnuplot plugs in nicely with how we do things
You may use something else, if you *really* want too...

Before gprof and gnuplot, we need to learn Bash!

	Linux Philosophy
	Compilation
	Makefile
	Debugging
	Sys Arch
	Valgrind
	Future

