
lab 07: Virtual Classes and Deep Copying

Instructions: In this lab, utilize a List interface to implement our Array class. List.hpp has been
provided:

1 #ifndef LIST_HPP

2 #define LIST_HPP

3

4 class List {

5 public:

6 /* Returns the index in the array where value is found.

7 * Return -1 if value is not present in the array.

8 */

9 virtual int indexOf(const int value) = 0;

10

11 /* Removes an item at position index by shifting later elements left.

12 * Returns true iff 0 <= index < size.

13 */

14 virtual bool remove(const int index) = 0;

15

16 /* Insert the integer val at position pos.

17 * Shift all values after pos up ("to the right") by one.

18 * This means the last element will be shifted out of the array

19 * (that is fine.)

20 * If pos is beyond the size of the array, increase the size of the array

21 * so val can be inserted.

22 */

23 virtual void insert(const int pos, const int val) = 0;

24

25 /* Retrieves the element at position pos

26 Returns -1 if pos is invalid.*/

27 virtual int get(const int pos) const = 0;

28

29 /* Sets the element at position pos to the value val.

30 Returns -1 if pos < 0.*/

31 virtual int set(const int pos, const int val) = 0;

32

33 /* Returns if the two lists contain the same elements in the

34 * same order.

35 */

36 virtual bool equals(const List &list) = 0;

37 };

38

39 #endif

Now provide an IntArray class that implements List and utilizes deep copy constructors. Con-
sider the following code:



40 const int ary[] = {10, 50, 34, 20};

41 IntArray *ary1 = new IntArray(ary, 5);

42 IntArray *ary2 = new IntArray(*ary1);

43 std::cout << "(ary1 == ary2)?" << (ary1 == ary2) << "\n";

44 std::cout << "ary1->equals(*ary2)?" << ary1->equals(*ary2) << "\n";

45 ary2.set(2, 10);

46 std::cout << "ary1->equals(*ary2)?" << ary1->equals(*ary2) << "\n";

47 ary2.set(2, 34);

48 std::cout << "ary1->equals(*ary2)?" << ary1->equals(*ary2) << "\n";

49 };

Write some test cases:
Create some test cases, using cxxtestgen, that you believe would cover all aspects of your code.

Memory Management:
Now that we are using new, we must ensure that there is a corresponding delete to free the memory.
Ensure there are no memory leaks in your code!

How to turn in:
Turn in via GitHub. Ensure the file(s) are in your directory and then:

• $ git add <files>

• $ git commit

• $ git push

Webhook: The webhook is:
http://coins.csuniv.edu:2234/github/build-csci-315-fall-2017.php
Remember, after the first push, please wait 5-10 minutes for the auto-grader to get your repository.
Then subsequent pushes should receive a grade.

Due Date: September 25, 2017 2359

Teamwork: No teamwork, your work must be your own.


