
lab 13 Fundamental sorting: Quick and Merge Sort

Instructions: Implement Quick and Merge sort for your Array List class. Then implement one
of the fundamental O(nlog2n) sorting algorithm (Quick or Merge) for a (singly or doubly) Linked
List.

1

2 template <class T>

3 class Array {

4 private:

5 /* You fill out the private contents. */

6

7 public:

8 ...

9

10 /* Runs a quick sort algorithm on the array.

11 * The array shall be ordered from least to greatest

12 */

13 void qsort();

14

15 /* Runs a merge sort algorithm on the array.

16 * The array shall be ordered from least to greatest

17 */

18 void msort();

19

20 /* Runs the sort routing you believe is the best. */

21 void sort();

22 ...

23 };

24

25

26 /* SLL = Singly Linked List */

27 template<class T>

28 class SLList {

29 ...

30 public:

31 ...

32 /* Sort the linked list. You may use any O(nlogn) sort algorithm you

33 * wish.

34 */

35 void sort();

36 ...

37 };

Write some test cases:
Create some test cases, using cxxtestgen, that you believe would cover all aspects of your code.



Part 2: Performance
Generate a graph to compare the performance of bubble sort, selection sort, insertion sort, and the
sort you chose for a Singly Linked List. Your graph should have data size on the x axis and time
on the y axis. Make sure to label each graph line! Please turn in as a .pdf!

Memory Management:
Now that are using new, we must ensure that there is a corresponding delete to free the memory.
Ensure there are no memory leaks in your code! Please run Valgrind on your tests to ensure no
memory leaks!

How to turn in:
Turn in via GitHub. Ensure the file(s) are in your directory and then:

• $ git add <files>

• $ git commit

• $ git push

Due Date: October 13, 2017 2359

Teamwork: No teamwork, your work must be your own.


