
lab 11: Bubble Sort and Binary Search

Part 1: Extend your implementation from lab08 to include functions for Bubble Sort and Binary
Search.

1

2 #ifndef ARRAY_H

3 #define ARRAY_H

4

5 template <class T>

6 class Array {

7 private:

8 /* You fill out the private contents. */

9

10 public:

11 /* Do a deep copy of the array into the list.

12 * Note: This one uses a pointer!

13 */

14 Array(const T *array, const int size);

15 /* Do a deep copy of the array into the list

16 * Note: This one uses a reference to a List!

17 */

18 Array(const Array<T> &list);

19

20 /* Return the current length of the array */

21 int getLength() const;

22

23 /* Returns the index in the array where value is found.

24 * Return -1 if value is not present in the array.

25 */

26 int search(const T &value);

27

28 /* Removes an item at position index by shifting later elements left.

29 * Returns true iff 0 <= index < size.

30 */

31 bool remove(const int index);

32

33 /* Retrieves the element at position pos */

34 T& operator[](const int pos);

35

36 /* Returns if the two lists contain the same elements in the

37 * same order.

38 */

39 bool operator==(Array<T> &list) const;

40

41 /* Runs a bubble sort algorithm on the array.



42 * The array shall be ordered from least to greatest

43 */

44 void bubbleSort();

45

46 /* Searches for an element with value value and returns the index of that

47 * data.

48 * NOTE: We assume the array is sorted!

49 * Return -1 if the value is not found.

50 */

51 int binarySearch(const T &value);

52

53 /* Free any memory used! */

54 ~Array();

55 };

56

57 /* Since Array is templated, we include the .cpp.

58 * Templated classes are not implemented until utilized (or explicitly declared).

59 */

60 #include "array.cpp"

61

62 #endif

Write some test cases:
Create some test cases, using cxxtestgen, that you believe would cover all aspects of your code.

Part 2: Performance
Generate a graph to compare the performance of linear search vs binary search. Your graph should
have array size on the x axis and time on the y axis. Make sure to label each graph line! Please
turn in as a .pdf!

Auto Grader:
The auto grader is only grading part 1, I will have to assess part 2. In other words, if the auto
grade issues a 100, that is only for part 1!

Memory Management:
Now that are using new, we must ensure that there is a corresponding delete to free the memory.
Ensure there are no memory leaks in your code! Please run Valgrind on your tests to ensure no
memory leaks!

STL:
You may not use anything from the STL.

How to turn in:
Turn in via GitHub. Ensure the file(s) are in your directory and then:

• $ git add <files>

• $ git commit



• $ git push

Due Date: October 04, 2017 2359

Teamwork: No teamwork, your work must be your own.


