CSCI 315: Data Structures

Paul E. West, PhD

Department of Computer Science
Charleston Southern University

August 22, 2017

Linux Philosophy

@0000000

Linux File Structure

@ In Linux, everything is a file. Well, almost!
@ Programs can use disk files, serial ports, printers, and

© 06 6 6 6 o o

other devices in exactly the same way they would use a file.

A file has a name and some properties, or “administrative
information”

creation/modification date

its permissions

The properties are stored in the file’s inode
a special block of data in the file system
contains administrative information
contains the length of the file

where on the disk it’s stored

Linux Philosophy
0@000000

Directories

o Directories are files.

@ A directory is a file that holds the inode numbers and
names of other files.

@ Each directory entry is a link to a file’s inode; remove the
filename and you remove the link.

o If the number of links to a file reaches zero, the inode and
the data it references are no longer in use and are marked
as free.

@ This allows deletion when there are multiple links to the
same file to be managed correctly.

Linux Philosophy
00@00000

Directoreis continued

o Files are arranged in directories, which may also contain
subdirectories

@ The / directory sits at the top of the hierarchy and contains
all of the system’s files in subdirectories

@ The /home directory is a subdirectory of the root directory
which is the home of all users

o /bin for system programs (“binaries”)
o /etc for system configuration files,
o /lib for system libraries

o /dev for physical devices and provide the interface to those
devices

//\

bin dev home

7N

neil rick

mail Tletters programs

Linux Philosophy
00008000

Files and Devices

@ Even hardware devices are very often represented
(mapped) by files.

@ You can mount a CD-ROM drive as a file:

@ # mount -1 is09660 /dev/hdc /mnt/cdrom

o # cd /mnt/cdrom

Linux Philosophy
00000800

/dev/console

@ This device represents the system console

@ Error messages and diagnostics are often sent to this
device.

@ On Linux, it's usually the “active” virtual console

Linux Philosophy
00000000

/dev/ity

@ The special file /dev/tty is an alias for the controlling
terminal of a process

o keyboard
@ screen
o window
o /dev/tty allows a program to write directly to the user,
without regard to which pseudo-terminal or hardware
terminal the user is using

Linux Philosophy
0000000@

/dev/null

@ This is the null device.
@ All output written to this device is discarded.

o Unwanted output (aka a student’s email complaint/rant) is
often redirected to /dev/null.

@ echo do not want to see this >/dev/null
@ cp /dev/null empty_file

Compilation
@®00000000

Introduction

@ As a programmer or system administrator, you should
know how to program under Linux
@ We are going to learn
o how to compile a program under Linux (gcc)
how to debug (gdb & ddd)
how to automate compilation (make)
how to perform memory analysis (valgrind)
how to create performance graphs (gnuplot - next set of
slides.)

© 06 06 o

Compilation
0e0000000

Compiling under C/C++

@ We start with the simple
case of all your source
code in a single file.

@ Try to generate a .c (NOT a

.cpp) file as listed on the !
left hand side.

#include <stdio.h>
int main(int argc, charx argv[]) {
printf("hello world\n");

return 0;

Compilation
[e]e] lelele]e]ele)

Compile

@ gcc test.c

@ What file is generated?

@ Name your compiled file by using
@ gcc test.c -o test

@ Run the generated executable file

Compilation
[e]e]e] lelelelele)

Creating Debug Ready Code

@ cc -g test.c -o test
@ The’-g’ flag tells the compiler to use debug info
@ The compile file size is much larger

@ We may still remove this debug information using the strip
command

o strip test

Compilation
[e]e]e]e] Telelele)

Adding Optimizations

@ The compiler can help improve the performance of your
code via optimizations

@ cc -O test.c -0 test
o The -O’ flag tells the compiler to optimize the code.

@ Usually can define an optimization level by adding a
number to the '-O’ flag

Compilation
[e]e]e]e]e] lelele)

Getting Extra Compiler Warnings

@ Error messages

o Erroneous code that does not comply with the C standard
o Warnings

o Codes that usually tend to cause errors during runtime
o Extra compiler warnings

o useful to improve the quality of our source code

o expose bugs that will really bug us later

o cc -Wall test.c -0 test

Compilation
0O00000e00

Compiling a C++ program

#include <iostream>

int main(int argc, charx argv[]) {
std ::cout << "hello world" << endl;
return 0;

Compilation
0000000 e0

Compiling Multi Source Programs

@ compile them
@ cc main.c a.c b.c -o hello_world
o Comments

o external symbols need “extern” keyword
o source file order becomes important
@ as program size increases so does compilation time

Compilation
0O0000000e

Limitation

@ Even if we only make a change in one of the source files,
all of them will be re-compiled when we run the compiler
again.

o To overcome:

CC -C main.cc

cc-ca.c

cc-cb.c

cC main.o a.o b.o -0 hello_world

o “-¢” tells compiler only to create an object file, and not to
generate a final executable file just yet

@ The fourth command links the 3 object files into an
executable file

© 0 o

©

Makefile
©000000

Automating Program Compilation

@ makefile is a collection of instructions that should be used
to compile your program.

@ Once you modify some source files, and type the
command “make” (or “gmake” if using GNU’s make), your
program will be recompiled using as few compilation
commands as possible.

Makefile
0®00000

Makefile Structure

o Variable Definitions

(*]

define values for variables for reuse

CFLAGS = —g —Wall
SRCS = main.c filel.c file2.c
CC = gcc

@ Dependency Rules

(*]

define under what conditions a given file needs to be
re-compiled, and how to compile it.

main.o: main.c
[tab] gcc —g —Wall —¢ main.c

if any of the files after : change,

then recompile

Note: You must use tabs in makefiles! (Spaces will NOT
work.)

is a comment

Makefile
fole] Yololele)

Single Source Makefile Example

first you list your variable(s)
CC = gce
top—level rule to create the program.
typically top rule is all (by convention)
all: main
compiling the source file , main.o depends on main.c
main.o: main.c
$(CC) —g —Wall —c main.c
$(CC) uses value of CC variable, case sensitive
linking the program, program name is main
main: main.o
($CC) —g main.o —o main
cleaning everything that can be automatically recreated with "make".
basically objects, the executable, and temp files
clean:
rm —f main main.o

Makefile
0000000

Multi Source file Example

top—level rule to compile the whole program.
all: prog
program is made of several source files.
prog: main.o filel.o file2.0
gcc main.o filel.o file2.0 —o prog
rule for file "main.o".
main.o: main.c filet1.h file2.h
gcc —g —Wall —¢ main.c
rule for file "file1.o0".
file1.o: filetl.c file1l.h
gcc —g —Wall —c filel.c
rule for file "file2.0".
file2.o: file2.c file2.h
gcc —g —Wall —c file2.c
rule for cleaning files generated during compilations.
clean:
rm —f prog main.o file1.o file2.0

Makefile
000000

Multi Source Make

@ Commands can be anything, though usually they are
gcc/g++ to compile or link

o Commands can be multiline, use tabs

@ make param:

o Runs the dependency for param
o No param runs first label found (usually all)
o make clean deletes files created by make

Makefile
000000

makedepend

Qo
Qo
Qo
Qo
Qo

Qo

Program to generate dependencies

Parameters are C/C++ files to scan

It processes # directives to check includes
Dependencies are critical, can do dependency graphs
Can be added to Makefile:

depend: Makefile $(SRC)
makedepend $(INCLUDES) $(SRC)

end of Makefile
DO NOT DELETE THIS LINE — make depend depends on it.

Now make depend will run makedepend and add its results
directly to Makefile. It doesn’t generate the commands, but
it does take care of finding dependencies for you.

Many compilers automatically run dependency checks
every time-never misses a dependency, but wasted work

Makefile
000000@

configure

@ Configure is part of the autoconf GNU system
o It makes Makefiles (ha!)

@ Finds things (like say tcl) and updates Makefile variables
with their locations

@ Good for multi-platform Makefiles
@ Not needed for this class

Debugging
®0000000000000

Debugging C/C++ Prrograms

o Before invoking the debugger, make sure you compiled
your program with the "-g" flag (for gcc or g++)
gcc -g debug_me.c -0 debug_me
gdb debug_me

[root@localhost root]# cc -g debug_me.c -o debug_me
[root@localhost root]# gdb debug_me

GNU gdb Red Hat Linux (6.0post-0.20040223.19th)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditionms.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDE was configured as "1386-redhat-linux-gnu"...Using host libthread_db 1lib
rary "/lib/tls/libthread_db.so.1". I
(gab) 11

Debugging
O®000000000000

Quitting

@ g quits the debugger

@ Only do this when you are done, not when you want to
reload a program

Debugging
0O0@00000000000

Running the Program Inside a Debugger

@ Once we invoked the debugger, we can run the program
using the command "run".

@ Can also just use the single letter r

o If the program requires command line parameters, we can
supply them to the "run" command of gdb
run "hello, world" "goodbye, world"

Debugging
0008000000000 0

Setting Breakpoints

@ A break point is a command for the debugger to stop the
execution of the program before executing a specific
source line.

o Specifying a specific line of code to stop in:
break 9 (assumes only 1 source file)
break debug_me.c:9
debug_me.c is the file name, 9 is the line number

@ Specifying a function name, to break every time it is being
called:
break main OR
b main

@ Can also give a Boolean expression for conditional
breakpoints

Debugging

0O000@000000000

o list#
Shows that line number and next few lines
Hit return to show more lines
Can also just use letter |

o | debug_me:#

Debugging
0O0000e00000000

Stepping A Command At A Time

@ Type command
break main
run "hello, world" "goodbye, world"

File Edit View Terminal Tabs Help

Copyright 2004 Free Software Foundation, Inc. [=]
GDB is free software, covered by the GNU Cenmeral Public License, and you are
welcome to change it and/or distribute copies of it under certain conditiems.

Type "show copying” to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "i386-redhat-linux-gnu"...Using host libthread_db 1ib
rary "/lib/tls/libthread db.so.1".

(gdb) break main

Breakpoint 1 at Ox80483d2: file debug_me.c, line 13.
(gdb) run "hello world" "Goodbye, world"

Starting program: /root/debug_me "hello world" "Goodbye, world"
Error while mapping shared library sections:

1 Success.

Error while reading shared library symbols:

: No such file or directory.

Error while reading shared library symbols:

: No such file or directory.

Error while reading shared library symbols:

: No such file or directory.

Breakpoint 1, main (arge=3, argv=0Oxfef6d094) at debug me.c:13
13 if (arge<2) |_|

Debugging
0O00000e0000000

Stepping A Command At A Time (continued...)

@ Now we want to start running the program slowly, step by
step.

@ "next" (or n) - (step over) execute the current command,
and stop again, showing the next command in the code to
be executed.

Breakpoint 1, main (argc=3, argv=0xfef6d094) at debug_me.c:13

13 if (argc<2)

(gdb)

(gdb) next

18 tEfcr (argc--,argv++, i=1; argc>0; argc--, argv++,i++)

(gdb)

Debugging
0O000000@000000

Stepping A Command At A Time (continued...)

o step (or s) - (step into functions) execute the current
command, and if it is a function call - break at the
beginning of that function

o step # - step # number of steps

Breakpoint 1, main (argc=3, argv=0xfef6d094) at debug_me.c:13

13 if (argc<2)

(gdb)

(gdb) next

18 for (argc--,argv++, i=1; argc>0; argc--, argv++,i++)
(gdb) step

20 print_string(i, argw[0]);

(gdb) I L

Debugging
0O0000000e00000

Printing Variables And Expressions

@ print (or p) the contents of a variable with a command like
this:

o printi
(gdb) step
20 print_string(i, argv[0]);
(gdb) print 1
$1 =1
(gdb)

@ You may also try to print more complex expressions, like
"i*2", or "argv[3]", or "argv[argc]"

Debugging
000000000 e0000

Examining The Function Call Stack

@ Once we got into a break-point and examined some

variables, we might also wish to see "where we are".
@ This can be done using the "where" command

(gdb) where
#0 main (argec=2, argv=0xfef6d098) at debug_me.c:20

(gdb)

Debugging
0000000000800 0

Examining The Function Call Stack

@ we can see contents of variables local to the calling
function, or to any other function on the stack
frame 1
print i

@ The "frame" command tells the debugger to switch to the
given stack frame

@ "0" is the frame of the currently executing function.

Debugging
00000000000 e00

Debugging A Crashed Program

@ Sometimes a program is will generate a core file containing
its memory image when it crashes

@ May also use backtrace (bt) shows series of functions calls
to where we are

@ Once we get such a core file, we can look at it by issuing
the following command
gdb /path/to/program/debug_me core

Debugging
00000000000 0e0

Miscellaneous

@ When you type run, it checks if executable has changed,
but doesn’t do recompilation

o kill terminates currently running code, but doesn’t exit gdb
@ help (or h) gives general help
@ Help command gives help on some command

Debugging
0000000000000

@ GUI wrapper for gdb

o Also a wrapper for Java’s jdb, Perl’s and Python’s pdb,
among others

@ apt-get install ddd

Sys Arch
@00

System Calls And Device Drivers

@ We can access and control files and devices using system
calls

o At the heart of the operating system, the kernel, are a
number of device drivers.

o The low-level functions used to access the device drivers,
the system calls, include:

(*]

© 606 06 ©

open: Open a file or device

read: Read from an open file or device

write: Write to a file or device

close: Close the file or device

ioctl: Pass control information to a device driver

Sys Arch
oeo

System Calls And Device Drivers

@ The problem with using low-level system calls directly for
input and output is that they can be very inefficient.
o Why?
o Performance penalty in making a system call.
o The hardware has limitations
@ To provide a higher-level interface to devices and disk files,
provides a number of standard libraries

Sys Arch
[ele] J

User program

Library ;

@ Calls

System calls

Kernel

- - |
Device Drivers !

A4

Hardware
Devices

<— User Space

<— Kernel Space

Valgrind
©000000

What Even Is?

@ Atool to perform
o memory debugging
o memory leak detection
o memory profiling
o Valgrind accomplishes this by running your program inside
of its virtual machine and capturing all your memory
accesses/requests.

Valgrind
0800000

Memory debugging

@ A successful run:

==2231== Memcheck, a memory error detector

==2231== Copyright (C) 2002—2013, and GNU GPL’d, by Julian Seward et al.
==2231== Using Valgrind —3.10.0 and LibVEX; rerun with —h for copyright info
==2281== Command: ./a.out

==2231==

==2231==

==2231== HEAP SUMMARY:

==2231== in use at exit: 0 bytes in 0 blocks

==2231== total heap usage: 0 allocs, 0 frees, 0 bytes allocated
==2231==

==2231== All heap blocks were freed — no leaks are possible

==2231==

==2231== For counts of detected and suppressed errors, rerun with: —v
==2231== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from O0)
@ Notice Valgrind keeps track of:
o (heap) memory used on exit
o How much heap memory was allocated & freed
o How many memory errors (out of bounds memory access)
were detected.
@ The “2231” is the process id, which for this class is
unimportant

Valgrind
00®0000

Memory Leak Detection

o Let’s examine an obvious memory leak:

int main(int argc, char =argv[]) {
int xints = new int[1024];

return 0;

}

g++ test.c && valgrind ./a.out
==2476== HEAP SUMMARY:

==2476== in use at exit: 4,096 bytes in 1 blocks

==2476== total heap usage: 1 allocs, 0 frees, 4,096 bytes allocated
==2476==

==2476== LEAK SUMMARY:

==2476== definitely lost: 4,096 bytes in 1 blocks

==2476== indirectly lost: 0 bytes in 0 blocks

==2476== possibly lost: 0 bytes in 0 blocks

==2476== still reachable: 0 bytes in 0 blocks

==2476== suppressed: 0 bytes in 0 blocks

@ Definitly lost means ... we lost ...

@ Inderectly lost means, we lost and it could be hard to find.

o Possibly lost means Valgrind was not able to determine if
the memory was deallocated or not.

Valgrind
0008000

Memory Usage detection

o A better version:

int main(int argc, char =argv[]) {
int xints = new int[1024];

delete[] ints;
return 0;

}
g++ test.c && valgrind ./a.out

==2591== HEAP SUMMARY:

==2591== in use at exit: 0 bytes in 0 blocks

==2591== total heap usage: 1 allocs, 1 frees, 4,096 bytes allocated
==2591==

==2591== AIll heap blocks were freed — no leaks are possible

@ Notice Valgrind can tell us how much heap memory we are
using even though we freed (deallocated) it.

Valgrind
0000000

Memory Access Error Detection

@ Now lets use Valgrind to detect a off by one memory error.

int main(int argc, char =argv[]) {
int xints = new int[1024];

for (int i = 0; i <= 1024; i++) {
ints[i] = i;
}

delete[] ints;
return 0;

}
Do you see the error?

==2615== Invalid write of size 4

==2615== at 0x400673: main (in /home/pwest/t/a.out)

==2615==Address 0x5a03040 is 0 bytes after a block of size 4,096 alloc’d
==2615== at 0x4C298A0: operator new[](unsigned long) (vg_replace_malloc.c:389)
==2615== by 0x40064E: main (in /home/pwest/t/a.out)

==2615==

==2615==

==2615== HEAP SUMMARY:

==2615== in use at exit: 0 bytes in 0 blocks

==2615== total heap usage: 1 allocs, 1 frees, 4,096 bytes allocate

o Well that tells us the error, but where is it?

Valgrind
0000000

Getting A Little More Help

@ Compile with debug flags! (g++ -g test.c && valgrind

Ja.out)
==2634== Invalid write of size 4
==2634== at 0x400673: main (test.c:7)
==2634== Address 0x5a03040 is 0 bytes after a block of size 4,096 alloc’d
==2634== at 0x4C298A0: operator new[](unsigned long) (vg_replace_malloc.c:389)
==2634== by 0x40064E: main (test.c:4)
==2634==
==2634==
==2634== HEAP SUMMARY:
==2634== in use at exit: 0 bytes in 0 blocks
==2634== total heap usage: 1 allocs, 1 frees, 4,096 bytes allocated
==2634==

2634== All heap blocks were freed — no leaks are possible

Valgrind
000000@

Conclusion

@ Valgrind can be used to detect memory leaks and memory
access errors.

@ Valgrind provides other tools to profile memory usage and
cache usage, but those are beyond the scope of this class.

o Notice that Java has memory debugging built it, but C++
doesn’t. Why?

Other Tools

@ gprof: Used to profile
o Profiling tells you where you program is spending the most
time.
o With that knowledge you can focus you energy on certain
parts to speed up performance. (Why?)
@ gnuplot: Generates simple graphs

o gnuplot plugs in nicely with how we do things
o You may use something else, if you *really* want too...

o Before gprof and gnuplot, we need to learn Bash!

	Linux Philosophy
	Compilation
	Makefile
	Debugging
	Sys Arch
	Valgrind
	Future

