
lab 18 Hash Tables with Chaining

Instructions: This lab is a practice in constructing a Hash Table with chaining. Implement a Hash
Table whose constructor take an integer (the initial size of the hash table), insert, remove, and get.
Hints: if the value is not found in the Hash Table return a value using the default constructor.
Also, use your previous code!

1 #ifndef HASH_TABLE_H

2 #define HASH_TABLE_H

3

4 /* HashTable via chaining */

5 template<class K, class V>

6 class HashTable {

7 private:

8 /* Class to begin filling out...*/

9 public:

10 /* Initialize the Hash Table with size size. */

11 HashTable(const int size);

12

13 /* Deconstructor shall free up memory */

14 ~HashTable();

15

16 /* Map key -> val.

17 * Return true if sucessful (it is unique.)

18 * Otheriwise return false.

19 */

20 bool insert(const K &key, const V &val);

21

22 /* Print out the HashTable */

23 void print() const;

24

25 /* Remove the val associated with key.

26 * Return true if found and removed.

27 * Otherwise return false.

28 */

29 bool remove(const K &key);

30

31 /* Retrieves the V val that key maps to. */

32 V& operator[](const K &key);

33 };

34

35 int hashcode(int key);

36 int hashcode(std::string &key);

37

38 #include "hashtable.cpp"

39



40 #endif

Write some test cases:
Create some test cases, using cxxtestgen, that you believe would cover all aspects of your code.

Memory Management:
Now that are using new, we must ensure that there is a corresponding delete to free the memory.
Ensure there are no memory leaks in your code! Please run Valgrind on your tests to ensure no
memory leaks!

STL:
You may use vector, queue/deque, and list from the STL. Do not use any other data structure
(especially map!) Failure to follow these instructions is an automatic 0 for this lab.

How to turn in:
Turn in via GitHub. Ensure the file(s) are in your directory and then:

• $ git add <files>

• $ git commit

• $ git push

Due Date: November 8, 2017 2359

Teamwork: No teamwork, your work must be your own.


