
../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

CSCI 315: Data Structures

Paul E. West, PhD

Department of Computer Science
Charleston Southern University

August 30, 2017

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Analysis of Algorithms

Dilemma: you have two (or more) methods to solve
problem, how to choose the BEST?
One approach: implement each algorithm in C, test how
long each takes to run.
Problems:

Different implementations may cause an algorithm to run
faster/slower
Some algorithms run faster on some computers
Algorithms may perform differently depending on data (e.g.,
sorting often depends on what is being sorted)

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Better Approach Step 1

characterize performance in terms of key operation(s)
Sorting:

count number of times two values compared
count number of times two values swapped

Search:
count number of times value being searched for is
compared to values in array

Recursive function:
count number of recursive calls

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Better Approach Step 2

Want to comment on the “general” performance of the
algorithm
Emperical: Measure for several examples, but what does
this tell us in general?
Analytical:

Instead, assess performance in an abstract manner
Idea: analyze performance as size of problem grows
Examples:

Sorting: how many comparisons for array of size N?
Searching: #comparisons for array of size N

May be difficult to discover a reasonable formula

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Analsysis With Varying Results

Example: for some sorting algorithms, a sorting routine
may require as few as N-1 comparisons and as many as N2

2
Types of analyses:

Best-case: what is the fastest an algorithm can run for a
problem of size N?
Average-case: on average how fast does an algorithm run
for a problem of size N?
Worst-case: what is the longest an algorithm can run for a
problem of size N?

Computer scientists usually use worst-case analysis

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Notice: We Are Estimating

What is often done is to approximate or estimate the
performance of an algorithm
Estimation is an important skill to learn and to use
Example Question: How many hotdogs tall is the Empire
State Building?

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Simple Example

Simplier Question: How tall
is the Empire State
Building?
Answer: The ESB is 1250
feet tall.
Assuming that a hotdog is
6 inches from end to end,
you would need, 1250 * 2
= 2500 hotdogs.

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Analysis

An objective way to evaluate the cost of an algorithm or
code section.
The cost is computed in terms of space or time, usually
The goal is to have a meaningful way to compare
algorithms based on a common measure.
Complexity analysis has two phases,

Algorithm analysis
Complexity analysis

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Algorithm Analysis

Algorithm analysis requires a set of rules to determine how
operations are to be counted.
There is no generally accepted set of rules for algorithm
analysis.
In some cases, an exact count of operations is desired; in
other cases, a general approximation is sufficient.
The rules presented that follow are typical of those
intended to produce an exact count of operations.

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Rules

1 We assume an arbitrary time unit.
2 Execution of one of the following operations takes time 1:

1 assignment operation
2 single I/O operations
3 single Boolean operations, numeric comparisons
4 single arithmetic operations
5 function return
6 array index operations, pointer dereferences

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

More Rules

3 Running time of a selection statement (if, switch) is the
time for the condition evaluation + the maximum of the
running times for the individual clauses in the selection.

4 Loop execution time is the sum, over the number of times
the loop is executed, of the body time + time for the loop
check and update operations, + time for the loop setup.

5 Always assume that the loop executes the maximum
number of iterations possible Running time of a function
call is 1 for setup + the time for any parameter calculations
+ the time required for the execution of the function body.

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example 1

count = count + 1 ; / / Cost : c1
sum = sum + count ; / / Cost : c2

Total Cost = c1 + c2.
Since we assume ’+’ cost 1 and assignment cost 1, the total
cost is 4.

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example 2

i f (n < 0) { / / Cost : c1
absval = −n ; / / Cost : c2

} else {
absval = n ; / / Cost : c3

}

Total Cost <= c1 + max(c2,c3)
c1 is the cost of boolean evaluation. Since there is 1
evaluation (<), Cost(c1) = 1.
c2 is the cost of negating a number (1) + the cost of
assignment (1). Cost(c2) = 2.
c3 is the cost of assignment(1). Cost(c3) = 1
Cost of the worse-case is 3.
Cost of the best-cast is 2.
Average case is 2.5.

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example 3

i = 1 ; / / Cost : c1
sum = 0; / / Cost : c2
while (i <= n) { / / Cost : c3

i = i + 1 ; / / Cost : c4
sum = sum + i ; / / Cost : c5

}

Cost(c1) = 1, Cost(c2) = 1, Cost(c3) = 1.
Cost(c4) = 1 + 1 = 2 (remember assignment and + both
cost 1!).
Cost(c5) = 2.
How many time does the loop execute?
Loop: n times, so total cost is:
Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*c5 =
c1 + c2 + c3 + n(c3 + c4 + c5)

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example 3

i = 1 ; / / Cost : c1
sum = 0; / / Cost : c2
while (i <= n) { / / Cost : c3

i = i + 1 ; / / Cost : c4
sum = sum + i ; / / Cost : c5

}

Cost(c1) = 1, Cost(c2) = 1, Cost(c3) = 1.

Cost(c4) = 1 + 1 = 2 (remember assignment and + both
cost 1!).
Cost(c5) = 2.
How many time does the loop execute?
Loop: n times, so total cost is:
Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*c5 =
c1 + c2 + c3 + n(c3 + c4 + c5)

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example 3

i = 1 ; / / Cost : c1
sum = 0; / / Cost : c2
while (i <= n) { / / Cost : c3

i = i + 1 ; / / Cost : c4
sum = sum + i ; / / Cost : c5

}

Cost(c1) = 1, Cost(c2) = 1, Cost(c3) = 1.
Cost(c4) = 1 + 1 = 2 (remember assignment and + both
cost 1!).

Cost(c5) = 2.
How many time does the loop execute?
Loop: n times, so total cost is:
Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*c5 =
c1 + c2 + c3 + n(c3 + c4 + c5)

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example 3

i = 1 ; / / Cost : c1
sum = 0; / / Cost : c2
while (i <= n) { / / Cost : c3

i = i + 1 ; / / Cost : c4
sum = sum + i ; / / Cost : c5

}

Cost(c1) = 1, Cost(c2) = 1, Cost(c3) = 1.
Cost(c4) = 1 + 1 = 2 (remember assignment and + both
cost 1!).
Cost(c5) = 2.

How many time does the loop execute?
Loop: n times, so total cost is:
Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*c5 =
c1 + c2 + c3 + n(c3 + c4 + c5)

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example 3

i = 1 ; / / Cost : c1
sum = 0; / / Cost : c2
while (i <= n) { / / Cost : c3

i = i + 1 ; / / Cost : c4
sum = sum + i ; / / Cost : c5

}

Cost(c1) = 1, Cost(c2) = 1, Cost(c3) = 1.
Cost(c4) = 1 + 1 = 2 (remember assignment and + both
cost 1!).
Cost(c5) = 2.
How many time does the loop execute?

Loop: n times, so total cost is:
Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*c5 =
c1 + c2 + c3 + n(c3 + c4 + c5)

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example 3

i = 1 ; / / Cost : c1
sum = 0; / / Cost : c2
while (i <= n) { / / Cost : c3

i = i + 1 ; / / Cost : c4
sum = sum + i ; / / Cost : c5

}

Cost(c1) = 1, Cost(c2) = 1, Cost(c3) = 1.
Cost(c4) = 1 + 1 = 2 (remember assignment and + both
cost 1!).
Cost(c5) = 2.
How many time does the loop execute?
Loop: n times, so total cost is:

Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*c5 =
c1 + c2 + c3 + n(c3 + c4 + c5)

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example 3

i = 1 ; / / Cost : c1
sum = 0; / / Cost : c2
while (i <= n) { / / Cost : c3

i = i + 1 ; / / Cost : c4
sum = sum + i ; / / Cost : c5

}

Cost(c1) = 1, Cost(c2) = 1, Cost(c3) = 1.
Cost(c4) = 1 + 1 = 2 (remember assignment and + both
cost 1!).
Cost(c5) = 2.
How many time does the loop execute?
Loop: n times, so total cost is:
Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*c5 =
c1 + c2 + c3 + n(c3 + c4 + c5)

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Nested Example

i = 1 ; / / Cost c1
sum = 0; / / Cost c2
while (i <= n) { / / Cost c3

j = 1 ; / / Cost c4
while (j <= n) { / / Cost c5

sum = sum + i ; / / Cost c6
j = j + 1 ; / / Cost c7

}
i = i + 1 ; / / Cost c8

}

Cost(c1) = 1, Cost(c2) = 1, Cost(c3) = 1, Cost(c4) = 1,
Cost(c5) = 1, Cost(c6) = 2, Cost(c7) = 2, Cost(c8) = 2
First (outer) while loop execution: n
Second (inner) while loop execution: n, total cost is:
c1 + c2 + (n + 1) ∗ c3 + n ∗ c4 + n ∗ (n + 1) ∗ c5 + n ∗ n ∗ c6 + n ∗ n ∗ c7 + n ∗ c8 =
c1 + c2 + c3 + n ∗ (c3 + c4 + c8) + n ∗ n ∗ c5 + n ∗ c5 + n ∗ n ∗ c6 + n ∗ n ∗ c7 =

c1 + c2 + c3 + n ∗ (c3 + c4 + c5 + c8) + n ∗ n(c5 + c6 + c7)

Important Note: n*n (n2) is the highest (largest) term!

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Nested Example

i = 1 ; / / Cost c1
sum = 0; / / Cost c2
while (i <= n) { / / Cost c3

j = 1 ; / / Cost c4
while (j <= n) { / / Cost c5

sum = sum + i ; / / Cost c6
j = j + 1 ; / / Cost c7

}
i = i + 1 ; / / Cost c8

}

Cost(c1) = 1, Cost(c2) = 1, Cost(c3) = 1, Cost(c4) = 1,
Cost(c5) = 1, Cost(c6) = 2, Cost(c7) = 2, Cost(c8) = 2

First (outer) while loop execution: n
Second (inner) while loop execution: n, total cost is:
c1 + c2 + (n + 1) ∗ c3 + n ∗ c4 + n ∗ (n + 1) ∗ c5 + n ∗ n ∗ c6 + n ∗ n ∗ c7 + n ∗ c8 =
c1 + c2 + c3 + n ∗ (c3 + c4 + c8) + n ∗ n ∗ c5 + n ∗ c5 + n ∗ n ∗ c6 + n ∗ n ∗ c7 =

c1 + c2 + c3 + n ∗ (c3 + c4 + c5 + c8) + n ∗ n(c5 + c6 + c7)

Important Note: n*n (n2) is the highest (largest) term!

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Nested Example

i = 1 ; / / Cost c1
sum = 0; / / Cost c2
while (i <= n) { / / Cost c3

j = 1 ; / / Cost c4
while (j <= n) { / / Cost c5

sum = sum + i ; / / Cost c6
j = j + 1 ; / / Cost c7

}
i = i + 1 ; / / Cost c8

}

Cost(c1) = 1, Cost(c2) = 1, Cost(c3) = 1, Cost(c4) = 1,
Cost(c5) = 1, Cost(c6) = 2, Cost(c7) = 2, Cost(c8) = 2
First (outer) while loop execution: n

Second (inner) while loop execution: n, total cost is:
c1 + c2 + (n + 1) ∗ c3 + n ∗ c4 + n ∗ (n + 1) ∗ c5 + n ∗ n ∗ c6 + n ∗ n ∗ c7 + n ∗ c8 =
c1 + c2 + c3 + n ∗ (c3 + c4 + c8) + n ∗ n ∗ c5 + n ∗ c5 + n ∗ n ∗ c6 + n ∗ n ∗ c7 =

c1 + c2 + c3 + n ∗ (c3 + c4 + c5 + c8) + n ∗ n(c5 + c6 + c7)

Important Note: n*n (n2) is the highest (largest) term!

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Nested Example

i = 1 ; / / Cost c1
sum = 0; / / Cost c2
while (i <= n) { / / Cost c3

j = 1 ; / / Cost c4
while (j <= n) { / / Cost c5

sum = sum + i ; / / Cost c6
j = j + 1 ; / / Cost c7

}
i = i + 1 ; / / Cost c8

}

Cost(c1) = 1, Cost(c2) = 1, Cost(c3) = 1, Cost(c4) = 1,
Cost(c5) = 1, Cost(c6) = 2, Cost(c7) = 2, Cost(c8) = 2
First (outer) while loop execution: n
Second (inner) while loop execution: n, total cost is:

c1 + c2 + (n + 1) ∗ c3 + n ∗ c4 + n ∗ (n + 1) ∗ c5 + n ∗ n ∗ c6 + n ∗ n ∗ c7 + n ∗ c8 =
c1 + c2 + c3 + n ∗ (c3 + c4 + c8) + n ∗ n ∗ c5 + n ∗ c5 + n ∗ n ∗ c6 + n ∗ n ∗ c7 =

c1 + c2 + c3 + n ∗ (c3 + c4 + c5 + c8) + n ∗ n(c5 + c6 + c7)

Important Note: n*n (n2) is the highest (largest) term!

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Nested Example

i = 1 ; / / Cost c1
sum = 0; / / Cost c2
while (i <= n) { / / Cost c3

j = 1 ; / / Cost c4
while (j <= n) { / / Cost c5

sum = sum + i ; / / Cost c6
j = j + 1 ; / / Cost c7

}
i = i + 1 ; / / Cost c8

}

Cost(c1) = 1, Cost(c2) = 1, Cost(c3) = 1, Cost(c4) = 1,
Cost(c5) = 1, Cost(c6) = 2, Cost(c7) = 2, Cost(c8) = 2
First (outer) while loop execution: n
Second (inner) while loop execution: n, total cost is:
c1 + c2 + (n + 1) ∗ c3 + n ∗ c4 + n ∗ (n + 1) ∗ c5 + n ∗ n ∗ c6 + n ∗ n ∗ c7 + n ∗ c8 =
c1 + c2 + c3 + n ∗ (c3 + c4 + c8) + n ∗ n ∗ c5 + n ∗ c5 + n ∗ n ∗ c6 + n ∗ n ∗ c7 =

c1 + c2 + c3 + n ∗ (c3 + c4 + c5 + c8) + n ∗ n(c5 + c6 + c7)

Important Note: n*n (n2) is the highest (largest) term!

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Nested Example

i = 1 ; / / Cost c1
sum = 0; / / Cost c2
while (i <= n) { / / Cost c3

j = 1 ; / / Cost c4
while (j <= n) { / / Cost c5

sum = sum + i ; / / Cost c6
j = j + 1 ; / / Cost c7

}
i = i + 1 ; / / Cost c8

}

Cost(c1) = 1, Cost(c2) = 1, Cost(c3) = 1, Cost(c4) = 1,
Cost(c5) = 1, Cost(c6) = 2, Cost(c7) = 2, Cost(c8) = 2
First (outer) while loop execution: n
Second (inner) while loop execution: n, total cost is:
c1 + c2 + (n + 1) ∗ c3 + n ∗ c4 + n ∗ (n + 1) ∗ c5 + n ∗ n ∗ c6 + n ∗ n ∗ c7 + n ∗ c8 =
c1 + c2 + c3 + n ∗ (c3 + c4 + c8) + n ∗ n ∗ c5 + n ∗ c5 + n ∗ n ∗ c6 + n ∗ n ∗ c7 =

c1 + c2 + c3 + n ∗ (c3 + c4 + c5 + c8) + n ∗ n(c5 + c6 + c7)

Important Note: n*n (n2) is the highest (largest) term!

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Comparing Algorithms

We measure an algorithm’s time requirement as a function
of the problem size.
Problem size depends on the application: e.g. number of
elements in a list for a sorting algorithm, the number disks
for towers of hanoi.
So, for instance, we say that (if the problem size is n)

Algorithm A requires 5 ∗ n2 time units to solve a problem of
size n.
Algorithm B requires 7 ∗ n time units to solve a problem of
size n.

An algorithm’s proportional time requirement is known as
growth rate.
We can compare the efficiency of two algorithms by
comparing their growth rates.

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example

Which is better?
50N2 + 31N3 + 24N + 15
3N2 + N + 21 + 4 ∗ 3N

Well, it depends on N:
N 50N2 + 31N3 + 24N + 15 3N2 + N + 21 + 4 ∗ 3N

1 120 37
2 511 71
3 1374 159
4 2895 397
5 5260 1073
6 8655 3051
7 13266 8923
8 19279 26465
9 26880 79005
10 36255 236527

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example

Which is better?
50N2 + 31N3 + 24N + 15
3N2 + N + 21 + 4 ∗ 3N

Well, it depends on N:
N 50N2 + 31N3 + 24N + 15 3N2 + N + 21 + 4 ∗ 3N

1 120 37
2 511 71
3 1374 159
4 2895 397
5 5260 1073
6 8655 3051
7 13266 8923
8 19279 26465
9 26880 79005
10 36255 236527

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

What happened?

N 3N2 + N + 21 + 4 ∗ 3N 4 ∗ 3N % of Total
1 37 12 32.4
2 71 36 50.7
3 159 108 67.9
4 397 324 81.6
5 1073 972 90.6
6 3051 2916 95.6
7 8923 8748 98.0
8 26465 26244 99.2
9 79005 78732 99.7
10 236527 236196 99.9

One term dominated the others.
This implies we really only care about the dominating
(highest/largest) term.

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

As N Grows, Some Terms Dominate

Function N=10 N=100 N=1000 N=10000 N = 100000
log2N 3 6 9 13 16
N 10 100 1000 10000 100000
N ∗ log2N 30 664 9965 105 106

N2 102 104 106 108 1010

N3 103 106 109 1012 1015

2N 103 1030 10301 103010 1030103

Ordering:
1 < log2N < N < N ∗ log2N < N2 < N3 < 2N < 3N

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Big O

If Algorithm A requires time proportional to f (n), Algorithm
A is said to be order f (n), and it is denoted as O(f (n)).
The function f (n) is called the algorithm’s growth-rate
function.
Since the capital O is used in the notation, this notation is
called the Big O notation.
If Algorithm A requires time proportional to n2, it is O(n2).
If Algorithm A requires time proportional to n, it is O(n).

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example 1

If an algorithm requires n2 − 3 ∗ n + 10 seconds to solve a
problem size n. If constants k and n0 exist such that
k ∗ n2 + n0 > n2 − 3 ∗ n + 10 for all n and n0.
Then the algorithm is order n2 (In fact, k is 3 and n0 is 2)
Thus, the algorithm requires no more than k ∗ n2 time units.
So it is O(n2)

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Examples

This is actually not that difficult. It is a game of “spot the
highest term!”
50N2 + 31N3 + 24N + 15 = O(N3)

3N2 + N + 21 + 4 ∗ 3N = O(3N)

It can get somewhat tricky:
N(3 + N(9 + N)) + N2 = O(N3)

N(10 + log2N) + N = O(N ∗ log2N)

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Growth Reate Function Explained

O(1) Time requirement is constant, and it is independent
of the problem’s size.
O(log2n) Time requirement for a logarithmic algorithm
increases increases slowly as the problem size increases.
O(n) Time requirement for a linear algorithm increases
directly with the size of the problem.
O(n ∗ log2n) Time requirement for a n ∗ log2n algorithm
increases more rapidly than a linear algorithm.
O(n2) Time requirement for a quadratic algorithm
increases rapidly with the size of the problem.
O(n3) Time requirement for a cubic algorithm increases
more rapidly with the size of the problem than the time
requirement for a quadratic algorithm.
O(2n) As the size of the problem increases, the time
requirement is too rapid to be practical.

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example 1

i = 1 ; / / Cost c1
sum = 0; / / Cost c2
while (i <= n) { / / Cost c3

i = i + 1 ; / / Cost c4
sum = sum + i ; / / Cost c5

}

T(n) = c1 + c2 + (n+1)*c3 + n*c4 + n*c5
= (c3+c4+c5)*n + (c1+c2+c3)
= a*n + b
So, the growth-rate function for this algorithm is O(n)

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example 1

i = 1 ; / / Cost c1
sum = 0; / / Cost c2
while (i <= n) { / / Cost c3

i = i + 1 ; / / Cost c4
sum = sum + i ; / / Cost c5

}

T(n) = c1 + c2 + (n+1)*c3 + n*c4 + n*c5
= (c3+c4+c5)*n + (c1+c2+c3)
= a*n + b
So, the growth-rate function for this algorithm is O(n)

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example 2

i =1; / / Cost c1
sum = 0; / / Cost c2
while (i <= n) { / / Cost c3

j =1; / / Cost c4
while (j <= n) { / / Cost c5

sum = sum + i ; / / Cost c6
j = j + 1 ; / / Cost c7

}
i = i +1 / / Cost c8

}

T(n) = c1 + c2 + (n+1)*c3 + n*c4 +
n*(n+1)*c5+n*n*c6+n*n*c7+n*c8
= (c5+c6+c7)*n*n + (c3+c4+c5+c8)*n + (c1+c2+c3)
= a*n*n + b*n + c
So, the growth-rate function for this algorithm is O(n2)

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example 2

i =1; / / Cost c1
sum = 0; / / Cost c2
while (i <= n) { / / Cost c3

j =1; / / Cost c4
while (j <= n) { / / Cost c5

sum = sum + i ; / / Cost c6
j = j + 1 ; / / Cost c7

}
i = i +1 / / Cost c8

}

T(n) = c1 + c2 + (n+1)*c3 + n*c4 +
n*(n+1)*c5+n*n*c6+n*n*c7+n*c8
= (c5+c6+c7)*n*n + (c3+c4+c5+c8)*n + (c1+c2+c3)
= a*n*n + b*n + c
So, the growth-rate function for this algorithm is O(n2)

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example 3

for (i =1; i <=n ; i ++) { / / Cost (c1)
for (j =1; j <= i ; j ++) { / / Cost (c2)

for (k =1; k<= j ; k++) { / / Cost (c3)
x=x +1; / / Cost (c4)

}
}

}

T(n) = c1*(n+1) + c2*((n+1)*(n+2)) / 2) + c3* (estimated:
(n * (n + 1) * (2n + 1)) / 6) + c4*(estimated: (n * (n + 1) *
(2n + 1)) / 6)
= a*n3 + b*n2 + c*n + d
So, the growth-rate function for this algorithm is O(n3)

Notice: You do NOT need to know the exact number of
iterations to find Big-O.

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example 3

for (i =1; i <=n ; i ++) { / / Cost (c1)
for (j =1; j <= i ; j ++) { / / Cost (c2)

for (k =1; k<= j ; k++) { / / Cost (c3)
x=x +1; / / Cost (c4)

}
}

}

T(n) = c1*(n+1) + c2*((n+1)*(n+2)) / 2) + c3* (estimated:
(n * (n + 1) * (2n + 1)) / 6) + c4*(estimated: (n * (n + 1) *
(2n + 1)) / 6)
= a*n3 + b*n2 + c*n + d
So, the growth-rate function for this algorithm is O(n3)

Notice: You do NOT need to know the exact number of
iterations to find Big-O.

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example 4

Unfortunately, recursive can be hard...
void hanoi (i n t n , char source , char dest , char spare) { / / Cost o f f u n c t i o n c a l l

i f (n > 0) { / / Cost (c1)
hanoi (n−1, source , spare , dest) ; / / Cost (c2)

cout << "Move top d isk from pole " << source
<< " to pole " << dest << endl ; / / Cost (c3)

hanoi (n−1, spare , dest , source) ; / / Cost (c4)
} }

By now, I hope you see that constance costs are virtually
supurfulous when working with Big O.
To find the growth-rate function for a recursive algorithm,
we have to solve its recurrence relation.
You will learn how to do this in Discrete Structures.

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example 4 continued

What is the cost of hanoi(n,’A’,’B’,’C’)?
when n=0 T(0) = c1
when n>0 T(n) = c1 + c2 + T(n-1) + c3 + c4 + T(n-1)
= 2*T(n-1) + (c1+c2+c3+c4)
= 2*T(n-1) + c -> recurrence equation for the growth-rate
function of hanoi-towers algorithm
Now, we have to solve this recurrence equation to find the
growth-rate function of hanoi-towers algorithm
This turns out to be O(2n) because for every N we make
2(n-1) calls.

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

What is Profiling

Allows you to learn:
where your program is spending its time
what functions called what other functions

Can show you which pieces of your program are slower
than you expected might be candidates for rewriting
Are functions being called more or less often than
expected?
This may help you spot bugs that had otherwise been
unnoticed

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Profilier

It uses information collected during the actual execution of
a program
Can be used on programs that are too large or too complex
to analyse by reading the source (or you are lazy.)
How your program is run affects the information that shows
up in the profile data

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Profilier Steps

Compile and link your program with profiling enabled
Often this is done by “-pg” option
$ gcc -Wall sampleCode.c -o sampleCode -pg
Execute your program to generate a profile data file
One important point to remember is that the program
execution should happen in such a way that all the code
blocks (or at least the ones you want to profile) get
executed.
$./sampleCode

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Profilier Steps Continued

Once the program is executed, it produces a file named
gmon.out.
This file contains the profiling data of the code blocks that
were actually hit during the program execution.
It is not a regular text file and therefore cannot be read
normally.

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Profilier Steps Continued

Execute gprof
Once the profiling data (gmon.out) is available, the gprof
tool can be used to analyse and produce meaningful data
from it.
$ gprof <command-line-options> <executable-file-name>
<profiling-data-file-name> > <output-file>
$ gprof sampleCode gmon.out > prof_output

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Flat Profile

time your program spent in each function
how many times that function was called
information on which functions burn most of the cycles is
clearly indicated here

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Flat Profile Results

% time percentage of the total execution time program
spent in this function
all functions combined should add up to 100%!
cumulative seconds This is the cumulative total number
of seconds spent executing this function plus the time
spent in all the functions above this one in this table
self seconds number of seconds accounted for by this
function alone
flat profile listing is sorted first by this number

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

calls total number of times the function was called if the
function was never called, or the number of times it was
called cannot be determined (probably because the
function was not compiled with profiling enabled), the calls
field is blank
self ms/call represents the average number of
milliseconds spent in this function per call if this function is
not profiled this field is blank
total ms/call represents the average number of
milliseconds spent in this function and its descendants per
call if this function is not profiled this field is blank

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Call Graph

shows, for each function:
which functions called it,
which other functions it called,
how many times it was called.
an estimate of how much time was spent in the
subroutines of each function
suggests places where you might try to eliminate function
calls that use a lot of time.

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Call Graph

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Limitations

profiling is taken at fixed intervals of run time (so count
may be different between runs!)
There are numerous events that may throw off your
analysis from actual experiments:

Varying processor speeds
Varying memory systems (Caches, L1, L2, Main)
Disk speeds & Network Traffic(I/O operations)
Software instrumentations (what type of optimizations did
you uses?)
Computer load during runs

These are beyond the scope fo this class.
Be aware that gprof may give anomalous results (and be
ready for them).
Like Newtonian Physics, gprof can be a good
approximation.

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Crash Course

gnuplot makes graphs
type “gnuplot” at your terminal
type “plot sin(x) with line”
type “plot sin(x) with point”
Type “set terminal postscript color”
Type “set output “nameofplot.ps” ”
Type “replot” or “rep”

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Continued

Type “set title “plotname” ”
Type “set ylabel “ylabel” ”
Type “set xlabel “xlabel” ”
to covert to something readable (like pdf). On the
command line do:
$ ps2pdf nameofplot.ps
Then you should have nameofplot.pdf
$ evince nameofplot.pdf

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Huge Time Saver!

The commands to gnuplot can be saved to a file and then
automatically used:
simple.plot:
set t e rm ina l p o s t s c r i p t co l o r
set output " s imple . ps "
set y l a b e l " t ime (seconds) "
set x l a b e l " s i ze "

. . .

$ gnuplot simple.plot
$ ps2pdf simple.ps
$ evince simple.pdf
Will display the graph.
This is especially useful if you put it in a makefile!
p l o t :

gnup lo t s imple . p l o t
ps2pdf s imple . ps
evince simple . pdf

Now ”$ make plot” generates the graph and displays it!

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Emperical Measurement

While Analytical measurement of performance is important
sometimes an emperical approach is most useful.
The naive way to take timings:

1 Record time as start
2 Run section of code you wish to time
3 Record time as end
4 You answer is (end - start).

While there are numerous issues with this approach, it will
give sufficient approximate timings for this class.

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

#include <iostream > / / To p r i n t
#include <t ime . h> / / Required f o r tak ing t im ings

i n t main (i n t argc , char ∗argv []) { / / Standard main heading .
/∗ c lock_ t i s the data type f o r s t o r i n g t im ing in fo rma t i on .
∗ We must make two var iab les , one f o r the s t a r t and the other to capture
∗ the d i f f e r e n c e .
∗ /

c lock_ t s t a r t , d i f f ;

/ / timeAmount i s used to p r i n t out the t ime i n seconds .
double timeAmount ;

/ / We want to run our a lgo r i t hm over vary ing s izes .
for (i n t i = 1000; i < 1000000; i += 1000) {

/ / Capture the s t a r t c lock
s t a r t = c lock () ;

/ / This i s were your a lgo r i t hm should be c a l l e d .
func t ionCal lToYouAlgor i thm (i) ;

/ / Capture the c lock and sub t rac t the s t a r t to get the t o t a l t ime elapsed .
d i f f = c lock () − s t a r t ;

/ / Convert c l ock_ t i n t o seconds as a f l o a t i n g po in t number .
timeAmount = d i f f ∗ 1.0 / CLOCKS_PER_SEC;

/ / P r i n t out f i r s t the s ize (i) and then the elapsed t ime .
std : : cout << i << " " << timeAmount << " \ n " ;

/ / We f l u s h to ensure the t im ings i s p r i n t e d out .
std : : cout << std : : f l u s h ;

}
return 0;

}

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Example Output

1000 4e−06
2000 8e−06
3000 1.2e−05
4000 2.5e−05
5000 2.9e−05
6000 2.4e−05
7000 3.5e−05
8000 2.9e−05
9000 3.2e−05
10000 3.5e−05
11000 3.9e−05
12000 4.2e−05
13000 4.5e−05
14000 5.2e−05
15000 5.6e−05
16000 6e−05
17000 6.5e−05
18000 6.8e−05
19000 7e−05
20000 7.6e−05

First is the size (1000) and second is the number of
seconds (pretty small.)

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Plotting

First lets us assume we have the
full listing in a file named
’single-timings’
With gnuplot we can simply
graph the timings:
plot [:][:] “single-timings” using
1:2 with line

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Multiple Data Collections

In addition to
’single-timings’ let us
assume we have another
file (in the same format)
named ’squared-
enhanced-timings’
With gnuplot we can graph
both timings:
plot [:][:] “single-timings”
using 1:2 with line,
“squared-enhanced-
timings” using 1:2 with
line
You can append more and more data files in this

manner.

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Summary

Hopefully you can see from today that we can:
Analyze algorithm analytically to predict performance.
Profile code to find what piece of code is the bottleneck.
Get & plot timings to see actual performance.

Performance Analysis could take the whole class time.
We stick with the basics for this class.
I do want to alert you to a couple of things that will help!

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Gotcha 1

You plot the data of two
algorithms, but you can
see only one!

Check your data and axis,
usually it is because it is
too small to see.
plot [:][:] "single-timings" using 1:2 with line,
"squared-timings" using 1:2 with line ->

plot [:][:2] "single-timings" using 1:2 with line,

"squared-timings" using 1:2 with line

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Gotcha 1

You plot the data of two
algorithms, but you can
see only one!
Check your data and axis,
usually it is because it is
too small to see.

plot [:][:] "single-timings" using 1:2 with line,
"squared-timings" using 1:2 with line ->

plot [:][:2] "single-timings" using 1:2 with line,

"squared-timings" using 1:2 with line

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Gotcha 1

You plot the data of two
algorithms, but you can
see only one!
Check your data and axis,
usually it is because it is
too small to see.
plot [:][:] "single-timings" using 1:2 with line,
"squared-timings" using 1:2 with line ->

plot [:][:2] "single-timings" using 1:2 with line,

"squared-timings" using 1:2 with line

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Performance Tips

Make sure you are working on optimizing the correct
function and looking for the correct code improvements.
From our example:

Most of the time is spent in func2, so improving func2’s
performance may help.
Improving performance of func1 would not help that much.
On the other hand, notice that func2 is called A LOT. If we
reduce the number of calls to func2 (and still be correct),
maybe we can improve performance.

Maybe we can memoize past results to use in the future.

../imgs/csu-logo

Intro Complexity Analysis Big O Practice gprof Gnuplot Timing Tips & Gotchas Conclusion

Summary

Again, there is a lot and we are scratching the surface.
Important outcomes:

Be able to analytically deduce the performance of code.
Be able to profile code to find the hot spots.
Be able to emperically run programs to evaluate
performance.
Understand there are anomalies that will not be addressed
in this class.

	Intro
	Complexity Analysis
	Big O
	Practice
	gprof
	Gnuplot
	Timing
	Tips & Gotchas
	Conclusion

